大市中国

大市中国 > 宏观 >

小白世纪首席科学家黄高博士DenseNet 算法,助力新冠肺炎精准诊断

2020-05-01 10:38:00

 

来源:中投投资咨询网

黄高,北京小白世纪网络科技有限公司(简称“小白世纪”)联合创始人兼首席科学家、清华大学控制科学与工程博士,曾在美国康奈尔大学计算机系从事博士后研究。主要研究方向包括机器学习、深度学习和计算机视觉,是主流深度学习模型DenseNet的提出者。在NIPS、ICML、CVPR、ICCV、ECCV、ICLR等国际会议与期刊发表论文40余篇,谷歌学术引用次数12000余次,是国内近十年在计算机视觉三大顶尖会议以第一作者发表论文被引用次数最高的学者。

在新冠肺炎疫情防控的紧要关头,黄高博士发明的DenseNet算法在CT影像诊断系统中被广泛应用。截至2020年4月30日采用了黄高博士DenseNet算法的诊断系统,已经在国家呼吸系统疾病临床研究中心、广州医科大学附属第一医院、中国人民解放军总医院(301医院)等300余家医院累计完成病例分析30000余例。

该CT影像诊断系统,实现新冠肺炎CT影像诊断可在20秒内完成对一份病历的分析,并且在回顾性测试病历上准确率和召回率均达95%以上。为鉴别新冠肺炎与普通肺炎,该模型评估指标AUC值为0.97,外加额外的临床特征,AUC值可达0.98,大幅提升影像诊断的精准性与便捷性。

小白世纪AI精准影像诊断系统

DenseNet是17年人工智能界提出的新一代深度神经网络架构。DenseNet从根本上解决了深度模型的训练难题,是近些年人工智能领域一个里程碑式的工作,被图灵奖得主、卷积神经网络之父YannLeCun教授列为当前四大主流深度卷积神经网络模型之一。被广泛应用于医疗、生物、化学、互联网等诸多领域。

DenseNet示意图

此次抗击疫情,DenseNet模型在新冠肺炎影像识别中,发挥出巨大作用。根据DenseNet的深度学习算法,计算机预先学习训练数据,学习新冠肺炎的特征,在为患者诊断的过程中,计算机自动读取CT影像,利用该算法自动分析、对比,查找出与新冠肺炎相匹配的特征,从而达到快速、精准的诊断效果。目前,该系统相关成果已经整理成学术论文,投稿至医学领域顶级期刊。

黄高博士表示:“疫情爆发导致阅片数量激增,医生阅片工作量大。新冠肺炎属于新发疾病,各地医疗机构特别是基层机构缺乏阅片经验。异病同影及病灶发展快等问题,也对新冠肺炎诊断造成了极大困扰。此外,根据国家呼吸系统疾病临床医学研究中心主任钟南山院士的发布的首篇新冠病毒论文,部分感染患者存在正常放射学表现,CT确诊新冠病毒感染准确率为76.4%。AI影像辅助诊断的推行,就是精准打击在抗击新冠肺炎疫情工作中的不利因素。”

郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除,多谢。