在智能材料领域 贡献中国智慧
“弯曲”材料可以产生电信号,说的就是挠曲电效应,这是智能材料领域的一项热门研究。
挠曲电效应,是指通过非均匀变形引起材料正负电荷中心分离,进而产生电压的一种效应。十余年来,西安交通大学申胜平教授领衔的智能材料与结构研究团队,致力于挠曲电材料与结构的力电耦合理论及应用研究,在这一曾经的冷门专业,攻克了诸多热点难题,取得了一系列备受瞩目的成果。
聚焦“冷门”
创新思路获得国际认可
“与传统压电效应不同,挠曲电效应在所有电介质中存在,且在微纳尺度可极大提升材料的换能效率。此外,挠曲电材料克服了压电材料的缺点,绿色无害,在智能材料与结构领域显示出了广泛的应用前景。”西安交通大学智能材料与结构研究团队成员梁旭介绍,近年来随着微纳米技术的不断发展,挠曲电效应在传感、能量采集等领域显示出了巨大的应用前景,逐渐成为国内外学界研究的热点问题之一。
然而十多年前,尽管已有学者发现了挠曲电效应,但由于压电能产生较强的电信号,国际学界的关注重点都聚焦在压电领域,关于挠曲电效应的研究鲜有人问津。由于压电效应在应用材料体系受限较大,本来专注于研究压电的申胜平教授,将目光转移到当时冷门的挠曲电效应研究方向,并于2008年成立了国内首个开展挠曲电效应理论研究的团队。
挠曲电理论的数学描述、本构方程,要比传统的压电理论复杂得多,且理论推导需要严密、大量的数学推断过程。因此,如何建立基于挠曲电效应的力电耦合理论,便成为摆在研究者面前的第一道难题。
“在那段时间里,我们几乎翻阅了所有相关的文献资料,进行公式的反复推演,一心只希望能早日把这个研究搞出来。”正是凭借着执着和钻研劲儿,团队仅用了不到两年时间,就建立了挠曲电纳米材料连续介质理论,推动了多场耦合力学的发展。该研究被欧美学者以申胜平名字命名(Shen Formulation),称其为“开创性的研究”“开创性的理论框架”。在该理论指导下,团队又在不到10年的时间里建立了系列分析模型,为微纳智能结构性能分析和稳定性分析,以及挠曲电智能器件设计提供了理论基础和新思路,得到国际学界的广泛肯定。
付诸实践
面向国家重大需求
在申胜平看来,科学研究不应仅仅停留在理论层面,更要面向世界科技前沿、面向经济主战场、面向国家重大需求。随着智能材料成为我国国防、航空航天等重要领域所需的核心材料之一,如何尽快将挠曲电理论应用于具体实践,设计出挠曲电智能器件成为申胜平团队进一步的重点工作。
团队成员邓谦在国外从事博士后研究期间,研究的方向就是挠曲电。“申老师在这方面的研究已经比较前沿,所以毕业后我就加入了他的团队。”在实验中,邓谦发现,最常用的挠曲电陶瓷易断裂、变形小,只有在微纳尺度才能产生大的应变梯度,而聚合物材料柔性好,即使在宏观尺度下也可以承受很大的应变梯度。一般聚合物材料的挠曲系数远远低于陶瓷,即便施加大的应变梯度,也难以得到强挠曲电效应。
面对这一难题,邓谦带领学生设计制备了一种携带永久电荷的新型电活性材料,成功预测并验证了其中的类挠曲电效应,将该聚合物材料中的挠曲电效应提高了100倍,大幅度提升了其挠曲电系数,为在宏观尺度上应用挠曲电效应提供了可能性。“我们相信,这一材料将在柔性传感器、驱动器等方面广泛应用。”邓谦满怀信心。
该团队成员来自力学、航空宇航、材料等不同专业,平均年龄不到40岁,充满了研究活力。“突出学科交叉,是智能材料领域发展的新方向。”梁旭介绍,“最开始,我们都是搞力学出身,可做研究单凭力学专业还远远不够,需要电学、材料学、化学等方面的知识。团队成员研究学科的交叉,为我们在这一领域深耕奠定了良好的基础。”
团队成员补学了大量其他学科的基础理论,与西安交通大学机械学院、电气学院、材料学院等搭建实验室,开展了一系列跨学科合作。现如今,团队也吸纳了具有机械、电气、材料、力学等专业学科背景的30余名学生。
学科交流
挠曲电效应国际研讨会成功举办
2019年8月,由西安交通大学航天航空学院主办的“2019年国际挠曲电理论与应用研讨会”成功召开。研讨会邀请了来自国内外高校及科研院所的50余位权威专家学者,就当前智能材料领域备受关注的研究热点问题,进行了深入而系统的学术成果交流。这是国际上首次举办的挠曲电研究专题研讨会,对于促进学科交流与合作、推动挠曲电效应及相关研究领域的发展具有重要意义。
“目前,国际上在挠曲电方向的研究力量相对比较分散,缺乏有效的交流途径。而我们搞这项研究用了十多年,所以希望能主办这一专业研讨会,推动挠曲电效应这一新兴研究方向在各领域的应用与发展。”申胜平团队已计划好,2020年还要举办第二届研讨会,希望能够推动该研究领域在国际上的发展。
谈到未来发展,申胜平团队成员们表示说:“与国家同向同行,为国家民族勇于担当,努力践行西迁精神,把爱国之情、报国之志落实到行动中,撸起袖子加油干,创造属于我们交大人的新贡献!”