大市中国

大市中国 > 财经 >

《人工智能芯片技术白皮书(2018)》

2018-12-11 18:55:00

 

来源:虎嗅网

12月10日—11日,由北京未来芯片技术高精尖创新中心和清华大学微电子学研究所联合主办的“第三届未来芯片论坛:可重构计算的黄金时代”在清华大学主楼举办,并正式发布了《人工智能芯片技术白皮书(2018)》(以下简称《白皮书》),同期《白皮书》电子版在机器之心同步首发。

人工智能热潮面前,淘金洼地接踵而至,安防、医疗、零售、出行、教育、制造业……因循守旧的传统行业正因为人工智能的嵌入而焕发出更多维度的商业机会,而这些机会都离不开基础层算力的支持,于是“AI 芯片”成为了 2018 年度最为热门的关键词之一。

然而,一个尴尬却无奈的现实正横亘在人工智能落地之路上——算力捉襟见肘,走出测试阶段的 AI 芯片寥寥无几,特定计算需求无法满足,导致再完美的算法也难以在实际场景中运行。

最典型的例子,安防市场谈智能终端摄像头已经有两三年时间,尽管巨头新秀的口号此起彼伏,但迫于芯片市场进度滞后,该类摄像头至今仍未普及开来。但与此同时,算力的进步恰恰来自于算法的迭代和优化。算法和算力——鸡和蛋的互生问题,正在相互促进却又在彼此制约中发展。

今天,机器之心带来一篇深刻讲述 AI 芯片产业发展全貌的权威报告——由清华大学—北京未来芯片技术高精尖创新中心联合发布的《人工智能芯片技术白皮书(2018)》。

《白皮书》编写团队资深权威,包括斯坦福大学、清华大学、香港科技大学、台湾新竹清华大学及北京半导体行业协会,新思科技等在内的领域顶尖研究者和产业界资深专家,10 余位 IEEE Fellow,共同编写完成。

《白皮书》发布仪式现场,照片从左至右分别为刘勇攀、尹首一、X.Sharon Hu、Kwang-Ting Tim Cheng、魏少军、唐杉、Yiran Chen、吴华强。

《白皮书》以积极的姿态分享了近两年来 AI 芯片与算法领域的诸多创新成果,通过客观阐述 AI 芯片在软硬件层面的技术难度,剖析 AI 芯片目前所处的产业地位、发展机遇与需求趋势,梳理 AI 芯片产业现状及各种技术路线,增进产业人士和从业者对于 AI 芯片市场的风险预判,以更为自信和从容的姿态迎接芯片市场的新机遇和新挑战。

一、AI 芯片的基本定义

《白皮书》第一、二、三章开宗明义,综述了 AI 芯片的技术背景,从多个维度提出了满足不同场景条件下理想的 AI 芯片和硬件平台的关键特征,提出 AI 芯片技术的重要地位以及对于我国未来芯片及人工智能领域发展的意义。

业界关于 AI 芯片的定义仍然缺乏一套严格和公认的标准。比较宽泛的看法是,面向人工智能应用的芯片都可以称为 AI 芯片。由于需求的多样性,很难有任何单一的设计和方法能够很好地适用于各类情况。因此,学界和业界涌现出多种专门针对人工智能应用的新颖设计和方法,覆盖了从半导体材料、器件、电路到体系结构的各个层次。

该《白皮书》探讨的 AI 芯片主要包括三类:

1。 经过软硬件优化可以高效支持 AI 应用的通用芯片,例如 GPU ;

2。 侧重加速机器学习(尤其是神经网络、深度学习)算法的芯片,这也是目前 AI 芯片中最多的形式 ;

3。 受生物脑启发设计的神经形态计算芯片。

AI 技术的落地需要来自多个层面的支持,贯穿了应用、算法机理、芯片、工具链、器件、工艺和材料等技术层级。各个层级环环紧扣形成AI的技术链,而AI芯片本身处于整个链条的中部,向上为应用和算法提供高效支持,向下对器件和电路、工艺和材料提出需求。

针对应用目标是“训练”还是“推断”,把 AI 芯片的目标领域分成 4 个象限。

上一页123下一页
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除,多谢。